Programming the Basic
Computer

Yasir
Rectangle

Programming the Basic Computer

A computer system includes both hardware and
software.

Hardware consist of the physical components.
Software refers to computer programs.
Hardware and software influence each other.

Binary code is difficult to work with: there is a need for

translating symbolic programs into binary programs, e.g.
(Intel x86):

10110000 =>mov al,

A written program can be machine dependent (assembly
language programs) or machine independent (e.g. C-
language programs).

A program is a list of instructions for performing a data
processing task.

There Is various programming languages a user can use to
write programs for a computer. However, computer can

execute only programs that are represented internally in a
valid binary form.

Programs written in any programming language must be
translated to the binary representation prior execution.

Program categories:
Binary code: exact representation of instructions in binary form.

Octal or hexadecimal code: translation of binary code into
equivalent octal or hexadecimal representation.

Symbolic code: symbolic representation is used for the parts of
the instruction code. Each symbolic instruction is translated
into one binary coded instruction by a program called an
assembler.

High-level programming language: developed to reflect the
procedures for solving problems rather than be concerned with
the computer hardware behavior. The program for translating a
high-level language program to binary is called a compiler.

Machine language refers to categories 1 and 2.

TABLE 6-1 Computer Instructions

(Mano 1993)

Hexadecimal
Symbol code Description
AND Oor8 AND M to AC
ADD lor9 Add M to AC, carry to E
LDA 20r A Load AC from M
STA JorB Store AC in M
BUN 4orC Branch unconditionally to m M refers to a
BSA 5orD Save return address in m and branch to m + 1 memory word
ISZ 6or E Increment M and skip if zero found at the effective
CLA 7800 Clear AC address
CLE 7400 Clear E
CMA 7200 Complement AC m denotes the
CME 7100 Complement E effective address
CIR 7080 Circulate right E and AC
CIL 7040 Circulate left E and AC
INC 7020 Increment AC,
SPA 7010 Skip if AC is positive
SNA 7008 Skip if AC is negative Figure 5.5 Basic computer instruction formats.
SZA 7004 Skip if AC is zero 1514 1211 0
SZE 7002 Skip if E is zero L1] Opode | Address | (Opcode = 000 through 110)
HLT 7001 Halt computer (a) Memory - reference instruction
INP F800 Input information and clear flag 15 12 11 0
ouT F400 Output information and clear flag |L°= -~ | Registropersion | (Opeode =111, 7=0)
SKI F200 Skip if input flag is on (b) Register - reference instruction
SKO F100 Skip if output flag is on 15 121 0
ION FO80 Turn interrupt on 1 L1 1] voopemion | (opoodeirt, 1=p
IOF F040 Turn interrupt off (c) o~ output instruction

= Relation between binary and assembly languages:

tedious for a programmer ..a bit easier
TABLE 6-2 Binary Program to Add Two Numbers TABLE 6-3 Hexadecimal Program to Add Two Numbers

Location Instruction code Location Instruction

0 0010 0000 0000 0100 000 2004

1 0001 0000 0000 0101 001 1005

10 0011 0000 0000 0110 002 3006

11 0111 0000 0000 0001 003 7001
100 0000 0000 0101 0011 004 0053
101 1111 1111 1110 1001 005 FFE9
110 0000 0000 0000 0000 006 0000

TABLE 6-4 Program with Symbolic Operation Codes

Location Instruction Comments
000 LDA 004 Load first operand into AC
001 ADD 005 Add second operand to AC ~™Much better
002 STA 006 Store sum in location 006
003 HLT Halt computer
004 0053 First operand
005 FFE9 Second operand (negative)

006 0000 Store sum here

o Using symbolic address and decimal operands

= numerical locations of memory operands are usually not exactly
known while writing a program.

= Decimal numbers are more familiar to humans

TABLE 6-5 Assembly Language Program to Add Two Numbers

pseudoinstruction

/Origin of program is location 0

LDA A /Load operand from location A
ADD B /Add operand from location B
STA C /Store sum in location C
HLT /Halt computer
label ———_ A, DEC 83 /Decimal operand
B, DEC —-23 /Decimal operand
DEC 0 /Sum stored in location C
END l /End of symbolic program
with C-language
inta= 83;
must be translated intb =-23:;
to binary signed-2’s complement int c;
representation c=a+hb;

Assembly Language

Almost every commercial computer has its own
particular assembly language.

All formal rules of the language must be conformed in
order to translate the program correctly.

Rules of the assembly language of the Basic Computer

1. The label field may be empty or it may specify a
symbolic address

2. The instruction field specifies a machine instruction of
pseudo instruction.

3. The comment field may be empty or it may include a
comment, which must be preceded by a slash i.e. /.

A symbolic address is restricted to three symbols — the

first one Is always a letter. The address Is terminated by a
comma.

The instruction field may specify:
A memory-reference instruction (MRI)
A register-reference instruction (non-MRI)
A pseudoinstruction with or without an operand

A memory-reference instruction occupies two or three symbols
separated by spaces. The first must be a three-letter symbols
defining MRI operation code from Table 6-1. The second is a
symbolic address, and the third is the optional | indicating
Indirect address.

non-MRI has not an address part.

CLA non-MRI
ADD OPR direct address MRI
ADD PTR I indirect address MRI

= A defined symbolic address must occur again in a label
field.

= A pseudoinstruction is an instruction for the assembler and
It gives information for the translation phase:

TABLE 6-7 Definition of Pseudoinstructions

Symbol Information for the Assembler

ORG N Hexadecimal number N is the memory location for the instruction or
operand listed in the following line

END Denotes the end of symbolic program

DECN Signed decimal number N to be converted to binary

}‘I}EX N Hexadecimal number N to be converted to binary

radix

= An example assembly language program:

(Mano 1993)

TABLE 6-8 Assembly Language Program to Subtract Two Numbers

ORG 100

LDA SUB

CMA

INC

ADD MIN

STA DIF

HLT
MIN, DEC 83
SUB, DEC -23

/Origin of program is location 100
/Load subtrahend to AC
/Complement AC

/Increment AC

/Add minuend to AC

/Store difference

100

memory

program

/Halt computer
/Minuend
/Subtrahend

DIF, HEX 0
END

/Difference stored here
/End of symbolic program

converted into a binary

—rnumber-of-signed-2's-complement

form (by the assembler)

106
108

data

Translation to binary is done by an assembler.

An assembler is a computer program for translating assembly language
— essentially, a mnemonic representation of machine language — into
object code.

A cross assembler (cross compiler) produces code for one processor,
but runs on another

o used e.g. in an embedded system software development in PC
o the final program is uploaded into a target device

As well as translating assembly instruction mnemonics into opcodes
assemblers provide the ability to use symbolic names for memory
locations (saving tedious calculations and manually updating addresses
when a program is slightly modified), and macro facilities for performing
textual substitution — typically used to encode common short
sequences of instructions to run inline instead of in a subroutine.

TABLE 6-9 Listing of Translated Program of Table 6-8

Hexadecimal code

Location Content Symbolic program

ORG 100
100 2107 LDA SUB
101 7200 CMA
102 7020 INC
103 1106 ADD MIN
104 3108 STA DIF
- 105 7001 HLT
106 0053 MIN, DECS83
107 FFE9 SUB, DEC -23
108 0000 DIF, HEX 0 address symbol table

Address symbol Hexadecimal address

(Mano 1993)

MIN 106
SUB 107
DIF 108

Representation of Symbolic Program in Memory

a

Q

user types the symbolic program on a terminal.

A loader program is used to input the characters of the symbolic
program into memory.

Since user inputs symbols, program’s representation in memory
uses alphanumeric characters (8-bit ASCII; see Table 6-10).

A line of code is stored in consecutive memory locations with two 8-
bit characters in each location (we have 16-bit wide memory).

End of line is recognized by the CR code.

TABLE 6-10 Hexadecimal Character Code (Mano 1993)

Character Code Character Code Character Code
A 41 Q 51 6 36
B 42 R 52 7 37
5 43 S 53 8 38
D 44 T 54 9 39
E 45 U 55 space 20
F 46 \" 56 (28
G 47 W 57) 29
H 48 X 58 . 2A
I 49 Y 59 + 2B
J 4A Z 5A , 2C
K 4B 0 30 - 2D
L 4C 1 31 . 2E
M 4D 2 32 / 2F
N 4E 3 33 = 3D
O 4F = 34 CR 0D (carriage
P 50 5 35 return)

= E.g. aline of code:
PL3, LDASUBI
IS stored in seven consecutive memory locations (see
Table 6-11):

(Mano 1993)

TABLE 6-11 Computer Representation of the Line of Code: PL3, LDA SUB I
Memory Hexadecimal

word Symbol code Binary representation

1 F L 50 4C 0101 0000 0100 1100

2 < g 520 0011 0011 0010 1100

3 LD 4C 44 0100 1100 0100 0100

4 A 41 20 0100 0001 0010 0000

5 S U 53 55 0101 0011 0101 0101

6 B 42 20 0100 0010 0010 0000

n 7 I CR 49 0D 0100 1001 0000 1101

Each symbol (see Table 6-11) is terminated by the code for
space (0x20) except last, which is terminated by the code
of carriage return (0Ox0D).

If a line of code has a comment, the assembler recognizes
It from code Ox2F (slash): assembler ignores all characters
In the comment field and keeps checking for a CR code.

The input for the assembler program is the user’s symbolic
language program in ASCII.

The binary program is the output generated by the
assembler.

A two-pass assembler scans the entire symbolic program
twice

First pass: address table is generated for all address symbols
with their binary equivalent value (see Fig. 6-1).

Second pass: binary translation with the help of address table
generated during the first pass.

To keep track of the location of instructions, the assembler uses a
memory word (variable) called location counter (LC): LC stores
the value of the memory location assigned to the instruction or
operand currently being processed.

The ORG pseudoinstruction initializes the LC to the value of the
first location. If ORG is missing LC is initially set to O.

The LC is incremented (by 1) after processing each line of code.

First
‘“'*pa“ (Mano 1993)

LC+0

I T

Scan next line of code

Set LC

yes

no
Label -

yes

S
END -

Store symbol

in address- no
symbol table s(ggo?d
together with pass
value of LC

P

Increment LC

Figure 6-1 Flowchart for first pass of assembler.

= Address symbol table occupies three words for each label
symbol encountered and constitutes the output data that
the assembler generates during the first pass.

TABLE 6-12 Address Symbol Table for Program in Table 6-8
Memory Symbol Hexadecimal

word or (LC)* code Binary representation
1 MI 4D 49 0100 1101 0100 1001
2 N , 4E 2C 0100 1110 0010 1100
3 (LO) 01 06 0000 0001 0000 0110
4 S U 53 55 0101 0011 0101 0101
5 B 42 2C 0100 0010 0010 1100
6 (LC) 01 07 0000 0001 0000 0111
7 DI 44 49 0100 0100 0100 1001
8 F , 46 2C 0100 0110 0010 1100
9 (LC) 01 08 0000 0001 0000 1000

* (LC) designates content of location counter. (Mano 1993)

Second pass:

Q

Machine instructions are translated by means of table-lookup
procedures: search of table entries to determine whether a specific

item matches one of the items stored in the table.

The assembler uses four tables. Any symbol encountered must be
available as an entry in one of the tables:

1. Pseudoinstruction table

2. MRI table: 7 symbols of memory-reference instructions and
their 3-bit operation codes.

3. Non-MRI table: 18 register-reference and io-instructions
and their 16-bit binary codes.

4. Address symbol table (generated during 1st pass)

The assembler searches the four tables to determine the binary
value of the symbol that is currently processed.

(Mano 1993)

Figure 6-2 Flowchart for sscond pass of msembles,

Error diagnostics:
o Iinvalid machine code not found in the MRI or non-MRI tables.
o Symbolic address not found from the address table.

- cannot be translated because the binary value is not known: error
message for the user.

Program Loops

= Program loop is a sequence of instructions that are executed many
times (within the loop) with a different set of data.

int a[100]; DIMENSION A(100)
| INTEGER SUM, A
:2:5“”‘:0? SUM=10

for (i=0;i<100;i++) DO 3 J=1, 100

sum = sum + a[i;

3 SUM=SUM+A(J)

A program that translates a program written in a high level
programming language to a machine language program is
called a compiler.

A compiler is a more complicated program than an
assembler.

Demonstration of basic functions of a compiler: translating

the previous c-program (loop) to an assembly language
program.

TABLE 6-13 Symbolic Program to Add 100 Numbers

Line
1 ORG 100 /Origin of program is HEX 100
corresponds 2 LDA ADS /Load first address of operands indexing of
assignment 3 STA PTR /Store in pointer do statement
SUM=0 4 LDA NBR /Load minus 100
5 _—" STACIR /Store in counter
CLA /Clear accumulator
7 LOP, ADD PTR1 /Add an operand to AC
8 ISZ PTR /Increment PD].I'H.‘E]‘ if counter is
loop counter g ISZCTR /Increment counter < oo ther ot
10 BUN LOP /[Repeat loop again from the loop
11 STA SUM {Store sum
/ 12 HLT ."_[-Ialt
13 ADS, HEX 150 [First address of operands
program loop 14 FTR, HEX 0 [This location reserved for a pointer
15 NER, DEC -100 /Constant to initialized counter
16 CTR, HEX 0 fThis location reserved for a counter
17 SUM HEX D /Sum is stored here
18 ORG 150 /Origin of operands is HEX 150 DIMENSION and
19 DEC 75 [First operand INTEGER statements
118 DEC 23 /Last operand
119 END /End of symbolic program

NOTE: indirect addressing provides the pointer mechanism. Registers used to store pointers
and counters are called index reqisters (memory words are used in this example).

Programming Arithmetic and Logic

Operations

Fig. 6-3 shows a flowchart of a multiplication program of
the basic computer

Q

Q

Q

multiplication of two 8-bit unsigned numbers (integers).

16-bit product.

Program loop is traversed eight times, once for each significant
bit.

X holds the multiplicand, Y holds the multiplier, and P holds the
product.

Example shows how an arithmetic operation can be implemented
by a program.

CTR+-8

P+0 X holds the multiplicand

¥ holds the multiplier
P forms the product

Example with four significant digits

X=00001111 P
Y =00001011 0000 0000
0000 1111 0000 1111

0001 1110 0010 1101
0000 0000 00101101
0111 1000 10100101

10100101

=U<E> =1
AE*#
ac_|
Ac_]

r

CTR+CTR+1

-

#0 =
N Q (Mano 1993)

Figure 6-3 Flowchart for multiplication program.

TABLE 6-14 Program to Multiply Two Positive Numbers

LOP,

ONE,

ZRO,

£

ShEs

-

ORG 100
CLE
LDAY
CIR
STAY
SZE

BUN ONE
BUN ZRO
LDA X
ADD P
STAP
CLE

LDA X
CIL

STA X
ISZ CTR
BUN LOP
HLT

DEC -8
HEX 000F
HEX 000B
HEX 0
END

[Clear E

/Load multiplier

[Transfer multiplier bit to E
/Store shifted multiplier
/Check if bit is zero

/Bit is one; go to ONE

/Bit is zero; go to ZRO
/Load multiplicand

/Add to partial product
/Store partial product
/Clear E

/Load multiplicand

/Shift left

/Store shifted multiplicand
/[Increment counter
/Counter not zero; repeat loop
/Counter is zero; halt

[This location serves as a counter

/Multiplicand stored here
/Multiplier stored here
/Product formed here

= Double-precision addition: addition of two 32-bit unsigned
Integers.

= Added numbers place in two consecutive memory
locations, AL and AH, and BL and BH.

= Sum is stored in CL and CH:

TABLE 6-15 Program to Add Two Double-Precision Numbers

LDA AL /Load A low
ADDBL /Add B low, carry in E
STA CL /Store in C low
CLA /Clear AC
CIL /Circulate to bring carry into AC(16)
ADD AH /Add A high and carry
ADDBH /Add B high
STA CH /Store in C high
HLT
AL, - /Location of operands

BL,
BH,

CH,

= Any logic operation can be implemented by a program
using AND and complement operations.

= E.g.x+y=(xXYy) by DeMorgan’s theorem.
= OR operation of two logic operands A and B:

LDA A Load first operand A

CMA Complement togeta

STA TMP Store in a temporary location
LDA B Load second operand B

CMA Complement to getB
AND TMP AND withAtogetAAB
CMA Complement againtogetAVB

= Other logical operations can be implemented in a similar
fashion.

The basic computer has two shift instructions: CIL, CIR.
Logical and arithmetic shifts can be programmed.

Logical shift-right (zeros added to the leftmost position):

CLE
CIR

Logical shift-left (zeros added to the rightmost position):

CLE
CIL

Arithmetic right-shift (sign bit remains):

CLE /Clear Eto 0

SPA /Skip if ACis positive; Eremains O
CME /AC is negative; setEtol

CIR /Circulate Eand AC

Arithmetic left-shift (zeros added to the rightmost position) — E must be checked
for an overflow, e.g.:

CLE [clear E

CIL [circulate left E and AC

SZE /skip if E is zero (= AC was positive)
BUN NEG /branch for checking the negative case
SPA /skip if AC is positive

BSA OVF /branch to overflow handling
BUN RET | /return main program
NEG, SNA /skip if AC is negative
BSA OVF
BUN RET I

Subroutines

A set of common instructions that can be used (called) in a program
many times is called a subroutine.

A branch can be made to the subroutine from any part of the main
program.

The return address must be stored (somewhere) in order to
successfully return from the subroutine.

In the basic computer the link between main program and
subroutine is the BSA instruction.

E.g. a subroutine (Table 6-17) for shifting the content of AC four
times to the left.

TABLE 6-16 Program to Demonstrate the Use of Subroutines

Location (Mano 1993)

ORG 100 /Main program

100 LDA X /Load X
101 BSA SH4 /Branch to subroutine
102 STA X /Store shifted number
103 LDAY /Load Y
104 BSA SH4 /Branch to subroutine again
<105 STAY /Store shifted number
106 HLT
107 X, HEX 1234
108 Y, HEX 4321
/Subroutine to shift left 4 times
109 SH4, HEX 0 /Store return address here
10A CIL /Circulate left once
10B CIL
10C CIL
10D CIL /Circulate left fourth time
10E AND MSK /Set AC(0-3) to zero
10F BUN SH41 /Return to main program
110 MSK, HEX FFF0 /Mask operand
END |BUN D.T. PC<AR, SC—0
BSA DsT,: M[AR]*“PC, AR« AR + 1
D;Ts: PC "'AR, SC«0

From the example (Table 6-17) we see that the first
memory location of each subroutine serves as a link
between the main program and the subroutine.

The procedure for branching to a subroutine and returning
to the main program is referred as a subroutine linkage.

The BSA instructions performs a subroutine call.

The last instruction of the subroutine (indirect BUN)
performs a subroutine return.

In many computers, index reqgisters are employed to
Implement the subroutine linkage: registers are used to
store and retrieve the return address.

Data can be transferred to a subroutine by using registers
(e.g. AC in previous example) or through the memory.

Data can be placed in memory locations following the call
(return from subroutine must be correspondingly modified).
Data can also be placed in a block of storage (structure):
the first address of the block in then placed in the memory
location following the subroutine call.

E.g. of parameter linkage (Table 6-17): OR operation.

The subroutine must increment the return address for each
operand.

E.g. of subroutine to move a block of data is presented in
Table 6-18.

TABLE 6-17 Program to Demonstrate Parameter Linkage
Location (Mano 1993)
ORG 200

200 LDA X /Load first operand into AC

201 BSA OR /Branch to subroutine OR

202 HEX 3AF6 /Second operand stored here

203 STA'Y /Subroutine returns here T~
204 HLT T
205 HEX 7B95 /First operand stored here

206 T HEX 0 /Result stored here

207 OR, HEX 0 /Subroutine OR

208 CMA /Complement first operan

209 STA TMP /Store in temporary location

20A LDA ORI /Load second operand

20B CMA /Complement second operand

20C AND TMP /AND complemented first operand

20D CMA /Complement again to get OR

20E ISZ OR /Increment return address /
20F BUN ORI /Return to main program

210 TMP, HEXO /Temporary storage

END
= BUN D.T,: PC<«AR, SC+«0
BSA DsT;: M[AR]«PC, AR« AR +1
D;Tj: ch—AR, SC«0

return address
must be incremented
three times

TABLE 6-18 Subroutine to Move a Block of Data

LOP,

. HEXO0 -
LDA MVE I
STA PTI1
ISZ MVE
LDA MVE I
STA PT2
ISZ MVE

BSA MVE

| __— HEX 100

HEX 200
DEC -16
HLT

LDA MVE 1
STA CTR
ISZ MVE
LDA PT11
STA PT21
ISZ PT1

ISZ PT2

ISZ CTR
BUN LOP
BUN MVE I

/Main program

/Branch to subroutine

[First address of source data
[First address of destination data
/Number of items to move
/subroutine returns here
/Subroutine MVE

/Bring address of source
/Store in first pointer
/Increment return address
/Bring address of destination (=200)
/Store in second pointer

/Increment return address

/Bring number of items

/Store in counter

/Increment return address

[Load source item

/Store in destination

/Increment source pointer
/Increment destination pointer
/Increment counter

/Repeat 16 times

/Return to main program

(= 100)

(Mano 1993)

Input-Output Programming

Input-output programs are needed for writing symbols to
computer’s memory and printing symbols from the
memory.

Input-output program are employed for writing programs
for the computer, for example.

Table 6-19 lists programs for the Basic Computer to
iInput and output one character: non-interrupt based
programs.

TABLE 6-19 Programs to Input and Output One Character

(a) Input a character:

CIF,

CHR,

(b) Output one character:

COF,

CHR,

SKI

BUN CIF
INP

OouT

STA CHR
HLT

LDA CHR
SKO

BUN COF
OuT

HLT

HEX 0057

(Mano 1993)

/Check input flag

/Flag=0, branch to check again
/Flag=1, input character

/Print character

/Store character

/Store character here

/Load character into AC

/Check output flag

/Flag=0, branch to check again
/Flag=1, output character

/Character is “W”’

= The second example (Table 6-20) receives two 8-bit
characters and places the result to 16-bit accumulator:

TABLE 6-20 Subroutine to Input and Pack Two Characters

IN2, — /Subroutine entry
FST, SKI
BUN FST
INP /Input first character
OuT
BSA SH4 /Shift left four times shifts AC 8-bits
BSA SH4 /Shift left four more times tSOJZG 'egt Usti_”g t(he
suproutine (see
SCD! SBIETIN SCD \ earlier example).
INP /Input second character
OUT " fills bits 0-7 of

BUNIN21 /Return AC (bits 8-15
(Mano 1993) yemain intact)

= The third example (Table 6-21) lists a program for storing
characters from the input device (e.g. keyboard) to
computer’'s memory: program can be used as a loader
program when a symbolic program is inputted to
computer’'s memory prior the usage of an assembler.

TABLE 6-21 Program to Store Input Characters in a Buffer

LDA ADS /Load first address of buffer
STA PTR /Initialize pointer

LOP, BSA IN2 /Go to subroutine IN2 (Table 6-20)
STA PTR 1 /Store double character word in buffer
ISZ PTR /Increment pointer
BUN LOP /Branch to input more characters
HLT

ADS, HEX 500 /First address of buffer
PTR, HEX 0 /[Location for pointer (Mano 1993)

The fourth example (Table 6-22) describes a program that
compares two memory words: the program can be utilized,
for example, when implementing assembler program’s
second-pass table lookup procedures.

TABLE 6-22 Program to Compare Two Words

LDA WD1 /Load first word

CMA

INC /Form 2’s complement
ADD WD2 /Add second word
SZA /Skip if AC is zero

BUN UEQ /Branch to “unequal” routine
BUN EQL /Branch to “equal” routine
WD1, —

WDz, — (Mano 1993)

The interrupt facility is useful in a multiprogram
environment when two or more programs reside in memory
at the same time: computer can perform useful
computations while waiting a request (interrupt) from an
external device.

The program that is currently being executed is referred to
as the running program.

The function of the interrupt facility is to take care of the
data transfer of a program while another program is being
executed (which must include ION if interrupt(s) is used).

The interrupt service routine must include instructions to
perform following tasks:

Save contents of processor registers: the service routine must
not disturb the running (interrupted) program.

Check which interrupt flag is set: this identifies the interrupt that
occurred.

Service the device whose interrupt flag was set: the sequence
by which the flags are checked dictates the priority assigned to
each device.

Restore the contents of processor registers.
Turn the interrupt facility on to enable further interrupts.
Return to the running program.

E.g. in Table 6-23.

TABLE 6-23 Program to Service an Interrupt

(Mano 1993)

BUN SRV
CLA

ION

LDA X
ADDY
STA Z

-

SRV, STA SAC
CIR
STA SE
SKI
BUN NXT
INP
ouT
STA PT11
ISZ PT1
SKO
BUN EXT
- LDAPT21
ouT
ISZ FT2
LDA SE
CIL
LDA SAC
ION
BUN ZRO I
SAC, —
SE, —
PT1, —
PT2, s

/Return address stored here
/Branch to service routine
/Portion of running program
/Turn on interrupt facility

/Interrupt occurs here

/Program returns here after interrupt

/Interrupt service routine

/Store content of AC
Move E into AC(1)
/Store content of E
[Check input flag

[Flag is off, check next flag
[Flag is on, input character
/Print character (clears FGO)
/Store it in input buffer
[Increment input pointer

/Check output flag
[Flag is off, exit

/Load character from output buffer

/Output character

/Increment output pointer
/Restore value of AC(1)

/Shift it to E
/Restore content of AC
Turn interrupt on

/Return to running program

JAC is stored here
/E is stored here

/Pointer of input buffer
/Pointer of output buffer

(:> PC=

1)

